
Un-Framework
Delivering Dynamic Experiences with HTML over the Wire

Andreas Nedbal / T3DD23

About Me

Andreas Nedbal
Senior Frontend Developer @ in2code

TYPO3 Core Merger: Backend UX
TYPO3camp Munich Organizer

<template>

 <ul id="entries">

 <li v-for="item in items">

 {{ item }}

 <button @click="fetchNextPage">Next Page</button>

</template>

<script>

const items = ref([])

function fetchNextPage() {

 fetch('/endpoint').then((res) => {

 items.value = items.value.concat(res.body)

 })

}

</script>

function fetchNextPage() {

 fetch('/endpoint').then(res => {

 $('#entries').append(res.html);

 })

}

Next Page

Frontend is hard

Node
Toolchains

Which npm packages do I need?
All those frameworks

Vite

Webpack

Rollup

React Vue

Svelte

Which are safe?

Which Node version do I need?

Switching versions for projects

Turbo Drive

Previously known as “Turbolinks” in the Rails world.

Turns a page into an “SPA” by replacing all regular page loads with AJAX.

Previous pages are cached, so perceived performance is way faster.

Turbo Frames

Turbo Frames allow pages to be decomposed into smaller components that
capture form actions and navigation.

Navigating inside a <turbo-frame id=”idName”> will check the target
response for a matching <turbo-frame> tag and only replace it’s contents with
the current tag present.

Turbo Streams

Actually meant for streaming over websockets, you can also use this as
responses from any web request.

Turbo will listen to responses using the text/vnd.turbo-stream.html
content-type and execute actions based on <turbo-stream> tags present.

Demonstration

Problems with the Turbo approach

Porting an existing site using a lot of JS already is not recommended.

Pages using Turbo don’t fire the load event anymore (or well, only once) since
page navigation is happening over AJAX.

This requires massive refactoring/rethinking of an application.

Controllers

Classes that contain functionality for sites using actions, targets and values in
HTML.

Controllers don’t require event listeners to be initialized, this happens
automatically as soon as a matching data-controller attribute is found on the
page or even asynchronously loaded.

<div data-controller="hello">

 <input data-hello-target="name" type="text">

 <button data-action="click->hello#greet">

 Greet

 </button>

</div>

import { Controller } from "stimulus"

export default class extends Controller {

 static targets = ["name", "output"]

 greet() {

 this.outputTarget.textContent =

 `Hello, ${this.nameTarget.value}!`

 }

}

Actions

Allow to call controller methods from HTML using data-action attributes.

Example:

<button data-action=”click->example#action”>

Would call the action() method on ExampleController on a button click.

The default interaction of an element can also be omitted, so the above can be
shortened to:

<button data-action=”example#action”>

<div data-controller="hello">

 <input data-hello-target="name" type="text">

 <button data-action="click->hello#greet">

 Greet

 </button>

</div>

import { Controller } from "stimulus"

export default class extends Controller {

 static targets = ["name", "output"]

 greet() {

 this.outputTarget.textContent =

 `Hello, ${this.nameTarget.value}!`

 }

}

Targets

Allow to define targets via HTML that can be accessed inside controllers as an
alternative to selecting them via queries.

The names of targets need to be defined in a static array in the controller.

Example:

<div data-controller=”test” data-test-target=”root”>

The element would be accessible as this.rootTarget in the controller class.

<div data-controller="hello">

 <input data-hello-target="name" type="text">

 <button data-action="click->hello#greet">

 Greet

 </button>

</div>

import { Controller } from "stimulus"

export default class extends Controller {

 static targets = ["name", "output"]

 greet() {

 this.outputTarget.textContent =

 `Hello, ${this.nameTarget.value}!`

 }

}

Values

Allow to specify values in HTML that can be used inside controllers using the
specified value name.

The names of values need to be defined in a static array in the controller.

Example:

<div data-controller=”test” data-test-example-value=”Hello World”>

this.exampleValue would resolve to “Hello World” in TestController.

Demonstration

Who is using Hotwire?

Integrations

Rails

Turbo Rails
bundle install turbo-rails

Laravel

Turbo Laravel
composer require hotwired/turbo-laravel

Symfony

Symfony UX Turbo
composer require symfony/ux-turbo

TYPO3

TYPO3 Extension “Topwire”
Find out more about it right at the next talk in Room IONOS

Past, Present and Future of creating server side rendered interactive websites
with TYPO3

by Helmut Hummel

Questions?

Thanks for listening!
Hope you enjoyed this talk :)

Feedback? Want to chat?

Fediverse (Mastodon/…):
@pixel@desu.social

Twitter:
@pixeldesu

TYPO3 Slack:
@pixeldesu

